Ternary Arsenides with LaFe ${ }_{4} \mathrm{P}_{12}$-Type Structure

DIETER J. BRAUN AND WOLFGANG JEITSCHKO
Institut für Anorganische und Analytische Chemie. Universität Giessen, D-6300 Giessen, West Germany

Received March 28, 1979; in final form July 16, 1979

Abstract

Ten new ternary arsenides with composition $\operatorname{Ln} T_{4} \mathrm{As}_{12}$ ($L n=$ rare earth element, $T=\mathrm{Fe}, \mathrm{Ru}$, or Os) were synthesized by reaction of the elemental components in silica ampoules. Their X-ray powder patterns show them to crystallize with the $\mathrm{LaFe}_{4} \mathrm{P}_{12}$-type structure. Their lattice constants are reported. The crystal structure of $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ was refined from single-crystal X-ray counter data to a conventional R value of 0.039 for 312 independent reflections. While the La-As and Fe -As distances are considered normal, the As-As distances of 2.57 and $2.58 \AA$ are found to be unusually large, as compared to distances of other two-electron As-As bonds. It is suggested that this is due to filling of As-As antibonding states.

Introduction

The skutterudite $\left(\mathrm{CoAs}_{3}\right)$-type structure occurs for all nine combinations of the metals Co, Rh, and Ir with the pnicogens P, As, and Sb (1). Recently we reported (2) on a series of isostructural compounds with composition $L n T_{4} \mathrm{P}_{12}$ ($L n=$ lanthanoid, $T=\mathrm{Fe}, \mathrm{Ru}$, and Os) and determined their structure from single-crystal data of $\mathrm{LaFe}_{4} \mathrm{P}_{12}$. It derives from the skutterudite-type structure by filling the $L n$ atoms in large voids formed by the pnicogens of the binary compounds. In the present paper we report on the corresponding ternary arsenides.

Sample Preparation

Starting materials were ingots of the rare earth metals (all of stated purities greater than 99.9%), powders of Fe, Ru, Os ($>99.9 \%$), and As ($>99.5 \%$). Filings of the rare earth metals were prepared and stored under argon. The As powder was kept at

510 K for several days under vacuum to drive off the $\mathrm{As}_{2} \mathrm{O}_{3}$. After no further $\mathrm{As}_{2} \mathrm{O}_{3}$ was sublimated, the elemental arsenic was purified by sublimation in a temperature gradient from 920 to 680 K under vacuum.

The coarse filings of the lanthanoids are not well suited for the preparation of the ternary compounds by reaction of the components at relatively low temperatures. Therefore rare earth arsenides with overall composition LnAs were prepared first by reaction of the elements components in sealed silica tubes, which were kept at 900 K for 2 days. The resulting sponges of the arsenides were ground under Ar together with the transition metals and As, and sealed again in evacuated silica tubes which, prior to filling, were annealed under vacuum to eliminate traces of water. The best results were obtained with the overall compositions $L n: T: A s=1: 4: 20$ which were rapidly heated to 1150 K and kept at this temperature for 3 hr . Then the samples were annealed at 1000 K for 4 to 7 days.

Thereafter the excess As was sublimated by keeping the hot end of the silica tubes at 900 K and the cold end at about 700 K . After that the samples were furnace cooled. X-Ray powder photographs showed them to be about 70 to 90% single phase with binary lanthanoid and transition metal arsenides as major impurities.

Apparently the ternary $L n T_{4} \mathrm{As}_{12}$ compounds become thermodynamically instable for the smaller lanthanoid components. Thus we were not successful in preparing the Nd compounds by this procedure. $\mathrm{NdOs}_{4} \mathrm{As}_{12}$ was prepared as described above, except that the samples were rapidly quenched after the heat treatment at 1000 K . However, the corresponding $\mathrm{Nd}-\mathrm{Fe}$ and $\mathrm{Nd}-\mathrm{Ru}$ arsenides were not obtained by this procedure either. To ensure that a possible contamination with silicon is not essential for the stability of these ternary arsenides, several compositions were successfully prepared in closed alumina containers sealed under vacuum in silica tubes.

Cell Constants and Properties

X-Ray powder patterns of the products were recorded with a Guinier camera and α-quartz $(a=4.91304 \AA, c=5.40463 \AA$) as standard. Lattice constants (Table I) were refined by least-squares calculations. In several cases the samples were prepared from different starting compositions and with different heat treatments. In all cases the resulting lattice parameters differed by no more than two standard deviations and no indications for extended homogeneity ranges were found. The evaluations of some typical powder patterns are given in Table II.

The $\mathrm{LaFe}_{4} \mathrm{P}_{12}$-type arsenides were obtained in the form of black sponges which could easily be ground to powders. They are stable in air and not dissolved in moderately diluted (1:1) hydrochloric acid.

TABLE I
Cell Dimensions and Calculated Densities of LaFe ${ }_{4} \mathrm{P}_{12}$-Type Arsenides ${ }^{a}$

	a (\AA)	V $\left(\AA^{3}\right)$	D_{c} $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
$\mathrm{LaFe}_{4} \mathrm{As}_{12}$	$8.3252(3)$	$577.0(1)$	7.26
$\mathrm{CeFe}_{4} \mathrm{As}_{12}$	$8.2959(4)$	$570.9(1)$	7.34
$\mathrm{PrFe}_{4} \mathrm{As}_{12}$	$8.3125(3)$	$574.4(1)$	7.30
$\mathrm{LaRu}_{4} \mathrm{As}_{12}$	$8.5081(3)$	$615.9(1)$	7.77
$\mathrm{CeRu}_{4} \mathrm{As}_{12}$	$8.4908(3)$	$612.1(1)$	7.83
$\mathrm{PrRu}_{4} \mathrm{As}_{12}$	$8.4963(3)$	$613.3(1)$	7.82
$\mathrm{LaOs}_{4} \mathrm{As}_{12}$	$8.5437(2)$	$623.6(1)$	9.57
$\mathrm{CeOs}_{4} \mathrm{As}_{12}$	$8.5249(3)$	$619.5(1)$	9.64
$\mathrm{PrOs}_{4} \mathrm{As}_{12}$	$8.5311(3)$	$620.9(1)$	9.62
$\mathrm{NdOs}_{4} \mathrm{As}_{12}$	$8.5291(2)$	$620.4(1)$	9.65

[^0]
Structure Refinement of $\mathrm{LaFe}_{\mathbf{4}} \mathbf{A s}_{12}$

A single crystal of $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ was isolater from a sample prepared as described above It had overall extensions of about $70 \times 70 \times$ $85 \mu \mathrm{~m}$ and was - for the purpose of the absorption correction - approximated by a sphere $\quad\left(\mu \mathrm{Mo} K_{\alpha}=415 \mathrm{~cm}^{-1} ; \quad \mu \mathrm{R}=1.9\right)$ Diffractometer data were collected with ar automated four-circle instrument witl graphite-monochromatized Mo_{α} radia tion, a scintillation counter, and a pulse height discriminator. Omega scans wert taken for all reflections within one octant o reciprocal space up to $2 \theta=84^{\circ}$. The sca1 width was 1.2° and background counts wer taken at both ends of the scans. Equivalen reflections were averaged.

The structure was refined (4) in spac group $\operatorname{Im} 3$ with La, Fe, and As in the posi tions $2(a), 8(c)$, and $24(g)$, respectively. Th initial free parameters for the As position were taken as obtained for the P positions is $\mathrm{LaFe}_{4} \mathrm{P}_{12}$ (2). Scattering factors for neutra atoms were used (5), corrected fo anomalous dispersion (6). An isotropi extinction parameter was refined as a least

TABLE II
Typical Powder Patterns of Arsenides with LaFe ${ }_{4} \mathrm{P}_{12}$-Type StrucTURE ${ }^{a}$

[^1]squares parameter. Ten reflections which were strongly affected by secondary extinction were not included in the last cycles of the refinements. Similarly very weak reflections with $F_{0}<6 \sigma$ were excluded. Their observed structure factors were usually greater than their calculated structure factors, since they were affected by Laue streaks of neighboring reflections, which were not completely suppressed by the graphite monochromator. The final conventional R value is 0.039 for the 312 reflections with nonzero weight. For the total of 429 reflections (Table III) R equals 0.061 . A final difference Fourier map showed no features higher than $2.9 \mathrm{e} \AA^{-3}$ or
lower than $-3.7 \mathrm{e} \AA^{-3}$. Final parameters are listed in Table IV, interatomic distances and angles in Table V.

Discussion

The $\mathrm{LaFe}_{4} \mathrm{P}_{12}$-type structure (Fig. 1) consists of FeP_{6} octahedra which share all corners with adjacent octahedra and thus the $\mathrm{Fe}: \mathrm{P}$ ratio is $1: 3$. The octahedra are rotated in such a way that for every four octahedra one large void is formed which is empty in the binary skutterudite-type compounds and filled by the lanthanoid atoms in the ternary compounds.

TABLE III
Observed and Calculated Structure Factors ${ }^{a}$

${ }^{a}$ Very weak structure factors and those which were strongly affected by secondary extinction were given zero weight in the least-squares refinement and were marked with one and two dots, respectively.

The rotation of the octahedra permits a close approach of the P (As) atoms which hereby form rectangular, nearly quadratic, four-membered rings. It is remarkable that the average P-P (As-As) bond distances in the binary skutterudite-type compounds are always somewhat greater than the usual twoelectron bond distances. They are still
greater in the ternary "filled" skutteruditetype compounds. Thus in CoP_{3} (7) the two different P-P distances are 2.24 and $2.34 \AA$; in $\mathrm{LaFe}_{4} \mathrm{P}_{12}$ (2) they are 2.29 and $2.36 \AA$ as compared to the usual two-electron bond P-P distance of $2.21 \AA(8,18)$. In $\mathrm{CoAs}_{3}(9)$ the As-As distances are 2.46 and $2.57 \AA$, and in the present study of $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ they

TABLE IV
Positional and Thermal Parameters of $\mathrm{LaFe}_{4} \mathrm{As}_{12}{ }^{a}$

	La	Fe	As
$\operatorname{Im} 3$	$2(a)$	$8(c)$	$24(g)$
x	0	$\frac{1}{4}$	0
y	0	$\frac{1}{4}$	$0.34556(7)$
z	0	$\frac{1}{4}$	$0.15474(7)$
U_{11}	$0.0077(2)$	$0.0031(2)$	$0.0039(2)$
U_{22}	U_{11}	U_{11}	$0.0044(2)$
U_{33}	U_{11}	U_{11}	$0.0045(2)$
U_{12}	0	$-0.0001(2)$	0
U_{13}	0	U_{12}	0
U_{23}	0	U_{12}	$0.0003(2)$
B	$0.61(2)$	$0.24(2)$	$0.34(2)$

${ }^{a}$ Standard deviations in the least significant digits are given in parentheses. Ellipsoidal thermal parameters are defined by $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\right.\right.$, $\left.\left.\ldots,+2 U_{12} h k a^{*} b^{*}+\ldots.\right)\right]$; equivalent isotropic parameters B are in \AA^{2}.
were found to be 2.57 and $2.58 \AA$. This compares to $\mathrm{As}-\mathrm{As}$ distances of $2.43 \AA$ in $\left(\mathrm{AsCH}_{3}\right)_{5}(10), 2.45 \AA$ in $\left(\mathrm{AsCF}_{3}\right)_{4}$ (11), $2.46 \AA$ in $\left(\mathrm{AsC}_{6} \mathrm{H}_{5}\right)_{6}$ (12), and the weighted average As-As distances of $2.43 \AA$ in MgAs_{4} (13), $2.45 \AA$ in SrAs_{3} (14), $2.46 \AA$ in LiAs (15), $2.48 \AA$ in $\mathrm{NdAs}_{2}(16), 2.50 \AA$ in $\mathrm{Sr}_{3} \mathrm{As}_{4}$ (17), $2.52 \AA$ in α - As (18), $\mathrm{Ca}_{2} \mathrm{As}_{3}$ (19), and EuAs (20), and $2.53 \AA$ in CaAs (21) and $\mathrm{Eu}_{5} \mathrm{As}_{4}$ (22). In various transition and posttransition metal diarsenides with pyrite (23), marcasite (24,25), arsenopyrite (26), and

TABLE V
Interatomic Distances and Selected InterAtomic Angles in $\mathrm{LaFe}_{4} \mathrm{As}_{12}{ }^{a}$

La: 12As	3.152	As-Fe-As	180,0 (3x)
Fe: 6As	2.365	As-Fe-As	83.5 (6x)
As: 2 Fe	2.365	As-Fe-As	96.5 (6x)
$1 \mathrm{As}^{\prime}$	2.572	As'-As-As'	90.0 (1x)
$1 \mathrm{As}^{\prime \prime}$	2.577	$\mathrm{Fe}-\mathrm{As}-\mathrm{Fe}$	123.3 (1x)
1 La	3.152	$\mathrm{Fe}-\mathrm{As}-\mathrm{As}^{\prime}$	109.7 (2x)
4As	3.149	$\mathrm{Fe}-\mathrm{As}-\mathrm{As}^{\prime \prime}$	$109.6(2 x)$

[^2]

Fig. 1. Crystal structure of $\mathrm{LaFe}_{4} \mathrm{As}_{12}$. One layer of the corner-shared FeAs_{6} octahedra is shown with the adjacent La atoms (spheres) above and below. The corners of the octahedra represent As atoms. The Fe atoms inside the octahedra are not shown.

Fig. 2. Cell volumes of $\mathrm{LaFe}_{4} \mathrm{P}_{12}$-type phosphides and arsenides. For comparison the lanthanoid contraction as observed for $L n$ compounds with NaCl -type structure (35) is also plotted. All volumes correspond to two lanthanoid atoms.
related structures (27-29) and compositions $(30,31)$ the As-As distances continuously cover the range between 2.41 and $2.49 \AA$. Thus they áre all shorter than the As-As distances in $\mathrm{LaFe}_{4} \mathrm{As}_{12}$.

On the other hand, the $\mathrm{La}-\mathrm{As}$ and $\mathrm{Fe}-\mathrm{As}$ distances are within the expectancy. The $\mathrm{Fe}-$ As distances of $2.365 \AA$ in $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ are close to the average Fe -As distances of $2.379 \AA$ in FeAs_{2} (24). For a direct comparison of La-As distances few data are available. In LaAs with NaCl -type structure (32) and coordination number 6 for La , the La-As distances are $3.07 \AA$. Since the coordination number of La in $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ is 12 , the somewhat larger La-As distances of $3.15 \AA$ in $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ are entirely acceptable.

Thus only the surprisingly large As-As distances remain to be rationalized. In the discussion of the structure of $\mathrm{LaFe}_{4} \mathrm{P}_{12}$ (2) we have used geometric arguments to account for the large $\mathrm{P}-\mathrm{P}$ distances. We considered the $\left[\mathrm{Fe}_{4} \mathrm{P}_{12}\right]^{3-}$ poly-"anion" as a framework in which the $\mathrm{P}-\mathrm{P}$ distances are stretched to accommodate the large La^{3+} cation, which in turn has shorter La-P distances than would be expected from the LaP distances in various La-polyphosphides. While we maintain this to be a reasonable explanation for the situation in $\mathrm{LaFe}_{4} \mathrm{P}_{12}$, we do not believe that geometric considerations of this kind can solely account for the large As-As distances in $\mathrm{LaFe}_{4} \mathrm{As}_{12}$. The reason for this is that the La-As distances in $\mathrm{LaFe}_{4} \mathrm{As}_{12}$ appear to be normal, while the La-P distances in the phosphide seem to be rather short.

As another possible explanation for the long As-As distances one might think of the possibility that the As-As interactions do not correspond to two-electron bonds. Both, less than two electrons per As-As bond (i.e., partial filling of As-As bonding states) or more than two electrons per As-As bond (i.e., partial filling of antibonding As-As states) would weaken the As-As bonds and
thereby shift the As-As distances to higher values.

We have previously proposed a qualitative band structure for $\mathrm{CeFe}_{4} \mathrm{P}_{12}$ (2). In this diagram the valence electrons fill with increasing energy first the $\mathrm{P}-\mathrm{P}$ bonding, then the $\mathrm{Fe}-\mathrm{P}$ bonding states. After that comes the $t_{2 g}$ manifold with six electrons per Fe atom (formal oxidation number +2 for Fe ; low-spin d^{6} system) and at still higher energy come the $\mathrm{P}-\mathrm{P}$ antibonding states which for $\mathrm{CaFe}_{4} \mathrm{P}_{12}$ were assumed to be unfilled. We expected the polyanion $\left[\mathrm{Fe}_{4} \mathrm{P}_{12}\right]^{4-}$ of $\mathrm{CeFe}_{4} \mathrm{P}_{12}$ to be semiconducting in analogy with isoelectronic CoP_{3} (33), with the band gap situated between the $\mathrm{Fe}-\mathrm{P}$ bonding and $\mathrm{P}-\mathrm{P}$ antibonding levels. The localized $t_{2 \mathrm{~g}}$ states were assumed within the band gap. For the isostructural arsenides essentially an analogous scheme can be used. The main difference will need to be a much smaller, possibly zero band gap, since in general band gaps of isostructural compounds decrease with increasing atomic weight within homologous series. More specifically, a band gap of 0.45 eV was recently reported for skutterudite-type CoP_{3} and no optical band gap was observed for the isostructural compositions CoAs_{3} and CoSb_{3} (34). With a decreasing band gap the antibonding As-As levels will overlap with the nonbonding $t_{2 g}$ states and/or with the bonding Fe -As level. In this way the antibonding As-As level will be partially filled and thereby the As-As distances will increase. We have started an investigation of the magnetic properties of these compounds to confirm and further elaborate on this model.

In Fig. 2 the cell volumes of the new $\mathrm{LaFe}_{4} \mathrm{P}_{12}$-type arsenides are plotted together with the volumes of the earlierreported (2) isotypic phosphides. The small volumes of the Ce compounds indicate that the Ce atoms are at least partially tetravalent. There is a larger difference in volume between the Ruand Os-containing
arsenides, than between the corresponding phospides. Only the large, more electropositive Ln elements seem to be able to form $\mathrm{LaFe}_{4} \mathrm{P}_{12}$-type compounds.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Dr. M. Jansen was responsible for the singlecrystal X-ray data collection. This work contains part of the doctoral thesis of the first-named author.

References

1. A. Kiekshus and T. Rakke, Acta Chem. Scand. A 28, 99 (1974).
2. W. Jeitschko and D. J. Braun, Acta Crystallogr. Sect. B 33, 3401 (1977).
3. K. Yvon, W. Jeitschko, and E. Parthé, J. Appl. Crystallogr. 10, 73 (1977).
4. G. Sheldrick, "SHELX 76," Program System for the Determination of Crystal Structures (1976).
5. D. T. Cromer and J. B. Mann, Acta Crystallogr. Sect. A 24, 321 (1968).
6. D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
7. S. Rundevist and N.-O. Ersson, Ark. Kemi 30, 103 (1968).
8. W. Jeitschko and P. C. Donohue, Acta Crystallogr. Sect. B 31, 574 (1975).
9. N. Mandel and J. Donohue, Acta Crystallogr. Sect. B 27, 2288 (1971).
10. J. M. Burns and J. Waser, J. Amer. Chem. Soc. 79, 859 (1957).
11. N. Mandel and J. Donohue, Acta Crystallogr. Sect. B 27, 476 (1971).
12. K. Hedberg, E. W. Hughes, and J. Waser, Acta Crystallogr. 14, 369 (1961).
13. R. Gérardin, J. Aubry, A. Courtois, and J. Protas, Acta Crystallogr. Sect. B 33, 2091 (1977).
14. K. Deller and B. Eisenmann, Z. Naturforsch. B 31, 1550 (1976).
15. D. T. Cromer, Acta Crystallogr. 12, 36 (1959).
16. Y. Wang, R. D. Heyding, E. J. Gabe, L. D. Calvert, and J. B. Taylor, Acta Crystallogr. Sect. B 34, 1959 (1978).
17. K. Deller and B. Eisenmann, Z. Naturforsch. B 32, 1368 (1977).
18. J. Donohue, "The Structures of the Elements," Wiley, New York (1974).
19. K. Deller and B. Eisenmann, Z. Naturforsch. B 31, 1023 (1976).
20. Y. Wang, E. J. Gabe, L. D. Calvert, and J. B. Taylor, Acta Crystallogr. Sect. B 33, 131 (1977).
21. P. L'Haridon, J. Guyader, and M. Hamon, Rev. Chim. Minér. 13, 185 (1976).
22. Y. Wang, L. D. Calvert, E. J. Gabe, and J. B. Taylor, Acta Crystallogr. Sect. B 34, 1962 (1978).
23. S. Furuseth, K. Selte, and A. Kiekshus, Acta Chem. Scand. 19, 735 (1965).
24. A. Kjekshus, T. Rakke, and A. F. Andresen, Acta Chem. Scand. A 28, 996 (1974).
25. A. Kjekshus, T. Rakke, and A. F. Andresen, Acta Chem. Scand. A 31, 253 (1977).
26. A. Kjekshus, Acta Chem. Scand. 25, 411 (1971).
27. W. N. Stassen and R. D. Heyding, Canad. J. Chem. 46, 2159 (1968).
28. M. E. Fleet, Amer. Mineral. 57, 1 (1972).
29. M. E. Fleet, Acta Crystallogr. Sect. B 30, 122 (1974).
30. M. Klein and H. H. von Schnering, J. Less Common Metals 11, 298 (1966).
31. P. Jensen, A. Kjekshus, and T. Skansen, J. Less Common Metals 17, 455 (1969).
32. A. Iandelli and E. Botti, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. 25, 498 (1937).
33. F. Hulliger, Struct. Bonding (Berlin) 4, 83 (1968).
34. J. Ackermann and A. Wold, J. Phys. Chem. Solids 38, 1013 (1977).
35. A. Iandelli, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. 37, 160 (1964).

[^0]: ${ }^{a}$ Standard deviations (given in parentheses for th least significant digits) obtained in the least-square refinements do not reflect possible homogeneity ranges

[^1]: ${ }^{a}$ The patterns were recorded with a Guinier camera and $\mathrm{Cu} K \alpha$ radiation. The Q values are defined by $Q=10^{4} / d^{2}\left[\AA^{-2}\right]$. The calculated pattern was generated by a computer program (3) assuming positional parameters of the As atoms as determined in the single-crystal study of $\mathrm{LaFe}_{4} \mathrm{As}_{12}$.

[^2]: ${ }^{a}$ All distances shorter than $3.5 \AA$ are listed. Standard deviations are all less than $0.002 \AA$ and 0.1°, respectively.

